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1. Introduction

MARKOWITZ (1952) mean-variance effi-
ciency is the basis of modern finance theory for
asset allocation. The MARKOWITZ efficient
frontier represents all efficient portfolios in the
sense that all other portfolios have lower ex-
pected returns for a given level of risk meas-
ured by standard deviation. Using a classical
mean-variance framework we investigate how
optimal holdings for the three global regions
(North America, Europe and the Pacific) de-
part from the benchmark (MSCI World index)
weights. We estimate the optimal weights for
the MSCI North America, MSCI Europe and
MSCI Pacific indices for four different strate-
gies. Portfolio one is constructed using the
moving average of the past variance as a fore-
cast for the next period. Portfolio two is based
on the forecasted variance matrix from a mul-
tivariate ARCH model, specifically the BEKK

model of ENGLE and KRONER (1995). For
the estimation of the optimal weights of port-
folio three we will use the forecasts of the first
two moments of the returns of the three MSCI
indices. In portfolio four we develop a simple
market timing rule based on multivariate vola-
tility forecasts.
The paper is organized as follows: In the next
section, we describe the 3 MSCI indices which
will be included in the portfolio analysis. In
section 3 we estimate a multivariate BEKK
model for the returns and the volatilities of the
three MSCI indices. Section four describes the
four portfolios we use in the comparison and
the classical mean-variance framework for con-
structing the portfolios. In section five we
evaluate the portfolios with the benchmark
using different criteria. In the last section we
summarize our results.

2. Data Description

We investigate the daily returns of the MSCI
Pacific, MSCI Europe and MSCI North Amer-
ica indices. The time horizon is from 1 May,
1995 to 3 April, 2000 (about five years), and is
divided into two parts: an in-sample-period of
800 trading days (approximately 3 years) until
23 May, 1998, which is used as the “training
sample” for model estimation; and an out-of-
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Table 1: Summary Statistics of the Daily Returns of the MSCI Indices
from May 1st 1995 until April 3rd 2000

Pacific Europe North America World

Min –0.0505 –0.0404 –0.0688 –0.0452
25% Quartile –0.0070 –0.0043 –0.0041 –0.0032
Mean   0.0000   0.0006   0.0008   0.0006
Median   0.0000   0.0010   0.0007   0.0009
75% Quartile   0.0065   0.0055   0.0064   0.0046
Max   0.1082   0.0415   0.0482   0.0323
Std.Dev.   0.0131   0.0091   0.0102   0.0076
Skewness   0.60        0.24        0.45        0.40      
Kurtosis   5.25        1.97        4.79        3.00      

Table 2: Correlation Matrix

Pacific Europe North America World

Pacific 1.00 0.34 0.05 0.47
Europe 0.34 1.00 0.47 0.73
North America 0.05 0.35 1.00 0.83
World 0.47 0.73 0.83 1.00

sample period of 486 days, which is used for
portfolio evaluation. Table 1 shows the de-
scriptive statistics for the whole time horizon.
Note that all returns are positively skewed and
that the kurtosis is largest (or peaked) for the
Pacific area (5.25) and smallest (or flat) for
Europe (1.97). The risk measured by the stan-
dard deviation is largest for the MSCI Pacific
index (0.0131) and smallest for the MSCI
World index (0.0076). The lower risk for the
MSCI World index can be seen as a conse-
quence of the portfolio effect which underlies
the MSCI World index.
Table 2 shows that North America dominates
the World index since it has the highest corre-
lation coefficient (0.83) followed by Europe.
This is also due to the fact that the North
America index has weights larger than 50% in
the MSCI World index.

3. Volatility Forecasts

This section describes how multivariate time
series models can improve the variance fore-
casts.  We will compare two volatility models:
the first model is the naive or historical vari-
ance (HV) model, where the moving average
of past variances is used for forecasts and the
second model is the multivariate BEKK model
of ENGLE and KRONER (1995).

3.1 The Naive or Historical Variance (HV)
Model

We use a moving (or rolling) sample of 800
observations to estimate the variance of the
returns vectors r t = ( r

P

t  ,  r
E

t ,  r
A

t )´ = (  r1,t  r2,t    r3,t

)´. Thus,  the  forecasts  of  the  variance ma-
trix for the period t + 1 is just the variance
matrix of the past 800 trading days. The fore-
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Table 3: The Forecasting Performance of the
HV Model

α (t-st.) β (t-st.) R2

Pacific 0.00 (–1.52) 4.72 (3.89) 0.03
Europe 0.00 (–2.42) 7.29 (5.26) 0.05
North America 0.00 (  0.30) 2.65 (2.11) 0.01

casting performance is evaluated by the auxil-
iary regression method of PAGAN and
SCHWERT (1990). Assuming zero mean re-
turns for all time points (see Table 1) we re-
gress the “realized volatility” (i.e. the squared
returns) on a constant and the forecasted vola-
tility.
This auxiliary regression model has the form

.3,2,1i    ;T,...,1t  ,ˆr t
2

t,i
2
t,i ==ε+σβ+α=          (1)

where the r2

i,t   are the squared returns of the i-
th MSCI index and 2

t,iσ)  are the variance fore-

casts. In the case of the multivariate model
they are the diagonal elements of the moving
sample. The intercept α  in (1) should be close
to 0 and the slope about 1. The t-statistics of
the coefficients for α  = 0 and β = 0 are a
measure for the bias in the auxiliary regression
and R2 is a measure for the overall forecasting
performance. Table 3 summarizes the results of
the auxiliary regressions. The forecasts per-
formance is disappointing in terms of the R2

measure. North America shows the smallest R2

and the least “bias”. Given the bad evaluation
results for variance forecasts it would be sur-
prising if any portfolio based on those fore-
casts outperforms the benchmark, i.e. the
MSCI World index.

3.2 The BEKK Model

The BEKK(p,q) model, defined by ENGLE and
KRONER (1995) is a special version of a

vector autoregressive conditional heteroske-
dasticity (VARCH) model. Let rt be the N di-
mensional vector of returns at time t, then we
assume a multivar iate normal distribution

rt  ∼  N(µ,Ht)                                              (2)

where µ is a constant mean vector and is Ht

parameterised by the following conditional co-
variance matrix structure:

( )∑ ∑
= =

−−− ′+′ε′ε+′=
p

1i

q

1i
iitiiititi00t .BHBAAAAH  (3)

The presence of the paired transposed matrices
implies a less general parameterization than the
VARCH model (where vechHt is parameter-
ized), but allows simpler calculation of the ML
estimates. Because the coefficient matrices A0 ,
Ai and Bi appear in pairs they guarantee the
non-negative-definiteness of the conditional
covariance matrix Ht. Using the AIC criterion,
we  select  a  BEKK(2,1)  model  for  the  re-
turns of the three MSCI indices. Table 4 shows
the AIC  and  BIC  for  different  orders  of
models.
Using a moving sample of 800 trading days we
forecast the volatility of the returns of the
MSCI North America, MSCI Europe and
MSCI Pacific indices for the out-of-the-sample
period, from 25 May 1998 until 3 April 2000
(486 trading days).

Table 4: AIC and BIC for Different Orders of the
BEKK Model

AIC BIC
BEKK(1,1) –16388 –16135*
BEKK(2,1) –16400* –16035
BEKK(2,2) –16323 –15901
BEKK(3,2) –16164 –15658

The star (*) denotes the smallest values.
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Figure 1: One Step ahead Volatility Forecasts of MSCI Europe Index
25 May 1998 until 3 April 2000

Figure 1 plots the returns and the one step
ahead forecasts of the variance of the MSCI
Europe index, which is taken from the second
diagonal element of the forecasted variance

matrix ( 1tĤ + ). The forecasted variance matrix

is obtained from (3) using the ML estimates
for the coefficients of the BEKK model which
was estimated by S+GARCH (1996). To
evaluate the forecasting performance of the
BEKK model we estimate the auxiliary regres-
sions (1) where we use the diagonal elements

of 1tĤ + as regressors, and the results are sum-

marized in Table 5.
Comparing Tables 3 and 5 we see that the
multivariate time series models perform better

(according to the R2s) than the simple naive
model. In POJARLIEV and POLASEK (2000)
we show that multivariate time series forecasts
also improve the estimation of the value at risk
of a portfolio. The next section shows that
better variance forecasts improve the perform-
ance of a portfolio based on those forecasts.

Table 5: The Forecasting Performance of the
BEKK Model

α (t-st.) β (t-st.) R2

Pacific 0.00 (1.50) 0.66 (3.60) 0.03
Europe 0.00 (1.20) 0.81 (7.76) 0.11
North America 0.00 (1.02) 0.87 (4.16) 0.03
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4. Portfolio Construction

Investors prefer portfolios with larger mean
returns and lower risk (measured in standard
deviation) and they will accept more risk only
if they get higher returns as compensation.
This means that all investors should hold
portfolios on the mean-variance frontier (see
GRINOLD and KAHN, 1995). Any portfolio
return on the frontier can be constructed as a
combination between the market portfolio and
the risk-free interest rate. The proportion of
these two funds depends on the utility func-
tions of investors. If an investor is extremely
risk-averse she or he will invest only in the
money market to get the risk-free rate.
Let w be the weights vector of the N assets, µ
the vector of the expected returns of the N as-
sets and H the variance matrix of the returns,
then the portfolio variance is given by σ2

p  =
w´Hw and the portfolio return µ p= w´µ . The
optimization problem of a mean-variance
portfolio in the absence of a risk-free asset is
(see e.g. CAMPBELL et al. 1997):
min w´Hw

subject to

w´µ  = µ p and  w´ι  = 1,

where ι  is a vector of ones. We call the solu-
tion of this optimization problem the µ -fixed
minimum variance (µMV) portfolio since µ p is
fixed like a target:

.hgw pp µ+=                                             (4)

The target µ p is a pre-specified portfolio return
and g and h are (N x 1) vectors,

( ) ( )[ ]
( ) ( )[ ]ι−µ=

µ−ι=

−−

−−

11

11

HAHC
D

1
h

     ,   HAHB
D

1
g

and A = ι ´H –1µ , B = µ´ H –1µ,  C = ι ´ H –1 ι ,
and D = BC – A2. A portfolio without a target
is called the global minimum-variance portfo-
lio if the weights vector is computed by the
simpler formula

ι= −1
GMV H

C

1
w                                            (5)

4.1 The Historical Variance (HV) Portfolio

Using the moving average forecasts of the
variance matrix in section 3.1 we derive the
weights for the HV portfolio from the GMV
formula in equation (5). Since the portfolio
weights depend only on the precision matrix
H –1 (or inverse variance matrix).

4.2 The Global Minimum-Variance (GMV)
Portfolio

The one step ahead forecast of the variance
matrix of the returns vectors of the MSCI Pa-
cific, MSCI Europe and MSCI North America
indices with the BEKK (2,1) model from sec-
tion 3.2 are used instead of the simple moving
average to estimate the weights vector of
global minimum-variance (GMV) portfolio for
the out-of-sample period. To avoid short posi-
tions we apply the restriction that all portfolio
weights are non-negative (w≥0).

4.3 The µ-fixed Minimum Variance (µMV)
Portfolio

We investigate if additional forecast informa-
tion can improve portfolio performance. Thus,
instead of only using the precision matrix we
apply the forecasted returns in the portfolio
decision problem.
The weights of portfolio 3 (µMV portfolio) are
computed by equation (4). The required inputs
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Figure 2: Comparison of optimal Portfolio Weights for Europe (Upper Panel) and North America
(Lower Panel): HV, µMV and GMV Portfolio
25 May 1998 until 3rd April 2000

are: the variance matrix H, the vector of the
expected asset returns µ  and the targeted
portfolio return µ p. We forecast the variance
matrix and the returns vectors by the
BEKK(2,1) model. As portfolio return µ p we
choose 12.5% per year or 0.05% per trading
day.
Figure 2 shows the weights of the three port-
folios for the out-of-sample period for the
MSCI Europe index and the MSCI North
America index. The weights for the Pacific in-
dex are suppressed since the weights sum up to
100%. We can see that the additional forecast
of the return vector µ t+1 implies more stable
weights for the µMV portfolio than for the
GMV portfolio. The use of the historical aver-
age as a forecast for the variance matrix of the

HV portfolio results in weights that are more
stable over time than the other portfolio weights.

4.4 The Market Timing Portfolio

The market timing strategy is based on ex-
pected excess return and a switching rule be-
tween assets. The portfolio managers invest
either in the market or in the risk-free asset:
According to forecasts for the excess returns
of the benchmark, they invest in the market if
the excess returns are positive or they switch
into cash if the excess returns are negative.
COCHRANE (1999) shows that a market tim-
ing strategy (based on a regression model of
returns on dividend price ratios) yields a port-
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folio return with an increased Sharpe ratio. He
shows that a market timing strategy can almost
double the average returns of the portfolio
over a five year period. In the next subsection
we develop a simple market timing rule based
on volatility forecasts.

Market Timing Rule based
on Volatility Forecasts

Assets with higher volatility have higher re-
turns because of the potential trade-off be-
tween risk and return. Thus, we propose an
aggressive market timing rule: If the forecasted
volatility is twice as high as the historical
volatility, we invest in the market, otherwise
we invest in the risk-free asset. Note that

switching into the risk-free asset will decrease
the portfolio variance. The lower panel of Fig-
ure 3 shows the market timing indicator for the
Pacific region: We invest in the Pacific index if
the forecasted (Pacific) variance is twice the
historical variance. The horizontal line marks
the days in which the doubled forecasted (Pa-
cific) variance is equal to the historical vari-
ance (the market timing indicator is equal to
zero). Thus, we invest in the Pacific index,
when the indicator is over the horizontal line
and visa versa. Similarly, we have defined the
market timing indicator for the European and
the North American region. The portfolio re-
turn for each time period is now a potential
mixture  of  the  risk-free rate and the regional
index returns. Note that this strategy does not
imply that we will always get returns above the

Figure 3: Returns and the Market Timing Indicator
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risk-free rate: If high volatility periods produce
returns under the risk-free rate, we might end
up with an overall portfolio return (in one or
more periods) below the risk-free rate. If the
indicator is positive, we invest in the appropri-
ate MSCI index, otherwise we invest in cash.
In the multivariate case, we invest in the index
with the weights computed as for the GMV
portfolio. For the risk-free rate we assume 5%
p.a. (as an alternative we could choose to in-
vest in bonds).
Figure 4 illustrates the overall gain of the mar-
ket timing strategy. The cumulative portfolio
returns are decomposed into two components:

1) the baseline portfolio gain which stems from
the returns of the GMV portfolio and 2) the
additional gain based on the overall market
timing rule. This MT component is positive ex-
cept a short period in summer 1998. This
shows that we could utilize the trade-off be-
tween risk and returns in the regional port-
folio. The plateau's in the MT component mark
those periods where the GMV portfolio –
which is seen as dotted line – determines the
return of the MT portfolio. The non-plateau
period  are  all  those  days  where  at  least  one
region  did  not  invest  in  the  regional  index.

Figure 4: The Cumulative Components of the Market Timing Portfolio

Note: The dotted line shows the GMV returns without MT. The bold line shows the additional yield using the MT volati l-
ity strategy. The plateau's are the periods with high volatility in all 3 regions: then the GMV and the MT portfolio give
the same returns
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5. Comparison

We compare the portfolio performances with
the MSCI World index for the out-of-sample
period (25 May 1998 – 3 April 2000) using the
following criteria:
•  mean return per year (in percent)
•  standard deviation per year (in percent)
•  cumulative return for 2 years and year to

date (in percent)
•  SHARPE ratio
•  success rate

The SHARPE ratio Sp is defined as the ex-
pected excess return of portfolio P divided by
the risk of portfolio P

,
rr

S
p

riskfreep
p σ

−
=                                                 (6)

where the risk-free rate rriskfree is assumed to be
5% per year. The correlation between the
given portfolio and the market portfolio is the
ratio of Sharpe measures (see HARVEY and
ZHOU, 1990). We define the success rate as
the percentage of times (in months) in which
the portfolio returns beat the benchmark re-
turns.
Table 6 summarizes the evaluation of the
portfolios by the five criteria. The HV port-
folio performs worse than the benchmark,

while the GMV portfolio, based on the one
step ahead forecast of the variance matrix in
the BEKK(2,1) model dominates the bench-
mark (MSCI World index): it exhibits larger
mean returns and smaller standard deviation.
The returns of the µMV portfolio are better
than the benchmark, but the gains are smaller
than in the GMV portfolio. The µMV portfolio
performance is the worse in the year-to-date
comparison (the year-to-date cumulative re-
turns start on 1st January 2000), but has much
more stable portfolio weights, which eventu-
ally leads to smaller transaction costs. Port-
folio four (the MT portfolio) based on the
market timing strategy dominates all other
portfolios.
Figure 5 compares the cumulative returns of
the naive or HV portfolio and the MT portfolio
with the benchmark. Note that the MT portfo-
lio beats the benchmark by almost 4% points
on a annual basis and is also the best in the
year-to-date comparison. The Sharpe ratio is
also the largest for the MT portfolio and this is
also due to a smaller standard deviation of the
portfolio return. The success rate is low for all
portfolios and surprisingly less than 50% for
the winner, the markt timing portfolio. This
might be a sign that the higher yields from the
MT strategy might be concentrated in a few
periods.

Table 6: Performance of the Portfolios and the Benchmark (MSCI World Index)
Cumulative returns for 2 years (from 25 May 1998 until 3 April 2000) and year-to-date returns for the year
2000

HV portfolio GMV portfolio µMV portfolio MT portfolio benchmark

mean returns 12.84% 16.39% 14.66% 18.17% 14.13%
st. dev. 14.90% 14.80% 14.99% 12.72% 15.14%
cum. returns
2 years 24.96% 31.86% 28.5%  35.31% 27.46%
year to date –0.06%   0.90% –0.23%   1.37%   0.42%
SHARPE ratio   0.52      0.76       0.64      1.05      0.60     
success rate  51.00%  51.80%  50.62%  49.59%
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Figure 5: Cumulative Returns from 25 May 1998 until 3 April 2000 for the HV and the MT Portfolio and
the Benchmark (MSCI World Index)

6. Conclusion

This paper describes a multivariate time series
model that is used to improve volatility fore-
casts of stock indices. We show how portfolio
performance for a 3-dimensional portfolio
model can be improved by modelling the re-
turns of the MSCI indices of North America,
Europe and the Pacific region. The MSCI
World index is used as a benchmark. Further-
more, we have proposed a new market timing
portfolio based on volatility forecasts. The
market timing strategy invests only in the stock
index if the forecasted volatility is twice as
large as the historical volatility. The compari-
son of the portfolios shows that the market
timing (MT) portfolio performs very well. It

has higher cumulative returns and smaller stan-
dard deviations for the last 2 years. Our ap-
proach shows that there exist trading strategies
which can successfully exploit the trade-off
between risk and returns. The volatility pre-
dictions gained through multivariate time se-
ries models can be successfully transformed
into higher portfolio yields by quantitative
portfolio strategies if the right combination of
volatility modelling and portfolio strategy can
be found. Many more market timing strategies
are possible and it remains to be seen if and
when they are successful. We conclude that re-
search in market timing strategies might be-
come more important in future for fund man-
agers who want to outperform benchmarks in a
more technical way.
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